ElectroCast[™] FST

TECHNICAL DATA SHEET

ElectroCast[™] FST is a no cement castable containing a Forsterite-Magnesia mineralogy. It offers high refractoriness, hot strength, and resistance to molten metal and alkali.

- Recommended for molten iron and steel contact applications where metal temperatures are less than 3050°F/1676°C.
- Well suited for ductile iron ladles, and pressure pour auto pour furnaces, steel tundish hot face applications, electric arc furnace water panel coverages, and other areas experiencing extreme iron oxide attack.
- Based on Reno's proprietary Electro-Chemical bond system featuring a nano particle electrolyte for ultimate performance.
- Low Permeability plus low porosity to restrict migration of alkali into the structure.
- Micro porosity of bond phase has greatly reduced reactivity to iron oxide.
- Reduced formation of slag buildup during ductile iron processing.

Service Temperature:	3050°F
Storage Life:	6 months
Electrolyte Type:	E3
Addition Quantity(Wt.):	5.0-6.0%
Wt. Required for Estimating:	168 pcf

TYPICAL CHEMICAL ANALYSIS (% Calcined Basis)

AI_2O_3	SiO ₂	Fe ₂ O ₃	MgO	CaO	TiO2
0.74	26.96	0.58	70.36	0.45	0.17

TYPICAL PHYSICAL PROPERTIES (Cast Samples)

Prefire	Modulus of	Cold Crushing	Density	Porosity	Linear	Permeability	Thermal k
Temperature	Rupture	Strength	(pcf)	(%)	Change	(mdarcy)	Btu/in/ft2/hr
(°F)	(psi)	(psi)			(%)From Green	0.3 Green	
300	1,945-2,270	6,290-6,930	172	7.6	NIL	0.49	15.35
750	1,850-2,035	9,810-10,125	170	14.3	-0.1	-	14.23
1500	1,215-1,315	5,275-6,300	168	14.9	-0.1	3.3	13.38
2000	710-765	2,985-3,000	167	17.1	-0.2		13.03
2200	915-1,060	2,915-2,785	169	15.6	0.2		12.91
2500	1,000-1,250	3,100-3,335	169	14.5	0.2	17.7	12.76
2650	1,040-1,260	3,045-3,260	169	14.2	0.2		12.68
2800	1,120-1190	3,510-3,565	170	13.5	NIL	27.7	12.62
3000	980-1,040	4,690-4,830	169	14.7	0.04		12.53

Thermal Expansion Coefficient Thermal Shock Loss (after 2000°F): Abrasion Loss After 1500°F: Abrasion Loss After 2500°F: Abrasion Loss After 2800°F: 5.84E-6 in/in/°F 25% MOR Loss (ASTM C-1171) 13.3 cc (ASTM C704) 17.5 cc (ASTM C704) 13.8 cc (ASTM C704)

E20-053 A

199020 5/18/2020

The data presented represents typical average results obtained by testing under ASTM or other acceptable procedures as required. They are subject to normal variations and should not be used for specification purposes.

Reno Refractories, PO Box 201, Morris, Alabama 35116 205.647.0240 | Toll Free 1.800.741.7366