Reno Firecast SiC BF

TECHNICAL DATA SHEET

Reno Firecast SiC BF is a high alumina silicon-carbide, no-cement castable designed to be installed by vibration casting, pump cast, and shotcrete techniques. Based on Reno's new propriety Firecast bond system with a very easy to use character.

- Water based, easy mixing, easy dry out, consistent wear patterns.
- Rapid dry out capability while still retaining reduced porosity and high strengths.
- Excellent material for applications in steel mill Blast Furnace troughs where difficult installation conditions exist.
- Excellent resistance to iron, slag, thermal shock, and oxidation.
- Recommended for use in blast furnace troughs and skimmer blocks, tilting runners, cupola skimmer blocks, cupola wells, troughs, and tap-hole blocks.
- Excellent refractory for large blast furnace troughs where slag resistance at high temperatures is paramount.

Service Temperature: 3000°F (1648°C) Wt. Required for Estimating: 183 lbs./ft³
Liquid Type: Storage Life: 6 months

Addition Quantity: 5.0 – 6.0% Shotcrete Binder: 1.5% Mag Sulfate

TYPICAL CHEMICAL ANALYSIS (% Calcined Basis)

Al ₂ O ₃	Al ₂ O ₃ SiC SiO ₂		Fe ₂ O ₃	TiO ₂	CaO	MgO	Alkalies
68-72	14-17	8-10	<2	<3.7	<1	1-2	< 1

TYPICAL COLD PHYSICAL PROPERTIES

Prefired to °F	Cold Modulus of Rupture (psi)	Cold Crushing Strength (psi)	Density (pcf)	Porosity (%)	Linear Change (%)	Abrasion Loss (cc)	Thermal Cycle Change (%)	Permeability (mDarcys)
250	662	3,369	185	14.4	0.00	-	-	0.54
750	664	3,708	184	14.2	0.00	-	-	1.10
1500	850	5,536	183	14.1	0.10	<10 cc	-	1.64
2000	1,869	15,182	183	14.2	0.00	-	+1.78	4.41
2500	1,508	12,973	184	14.2	0.30	5 cc	-	7.79
2700	1,557	13,190	185*	14.4*	0.56*	-	-	8.78

TYPICAL HOT PHYSICAL PROPERTIES

Prefired to	Hot Modulus of Rupture	Thermal Conductivity	Thermal Expansion		
°F	(psi)	(BTU/ft²/hr./in/°F)	(%)		
250		17.6	0.00		
750		16.2	0.16		
1500		15.4	0.40		
2000		15.1	0.76		
2500		14.8	1.12		
2700	635*	14.7	1.22		

US Steel Thermal Shock after 10 cycles 2000F: 2,2,2,2,2 (*) Test results from Edward Orton Testing Center

Bake Out Schedule: Schedule D

22-172 & 24-012 PIN#680000 5/7/24

The data presented represents typical average results obtained by testing under ASTM or other acceptable procedures as required. They are subject to normal variations and should not be used for specification purposes.